
Practical Aspects of Variable Reduction
Formulations and Reduced Basis Algorithms
in Multidisciplinary Design Optimization

Robert Michael Lewis �

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23681-0001

Abstract

This paper discusses certain connections between nonlinear programming algo-
rithms and the formulation of optimization problems for systems governed by state
constraints. I work through the calculation of the sensitivities associated with the
di�erent formulations and present some useful relationships between them. These
relationships have practical consequences; if one uses a reduced basis nonlinear pro-
gramming algorithm, then the implementations for the di�erent formulations need
only di�er in a single step.

� This research was supported by the National Aeronautics and Space Administration under

NASA Contract No. NAS1-19480 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23681-0001 and by the State of Texas contract 1059.

i

1. Introduction. This paper discusses certain useful relationships between non-
linear programming algorithms and the formulation of optimization problems for sys-
tems governed by state constraints. The simplest instance of such a problem is

minimize ~f (x) = f(x; u(x));(1)

where f is a real-valued function and u(x) is computed via the solution of a system
of equations

h(x; u(x)) = 0:

Think of x as the design variables of the problem, and of u as the state variables de-
scribing the physical state of the system to be optimized. The equations h(x; u(x)) = 0
represent typically a system of ODE or PDE that govern the system. Given a value
of the design variables x, we can solve these equations for the state u(x). In the com-
putational setting, the design variables x and state variables u will each lie in some
�nite-dimensional vector space.

More generally, of course, the problem could have additional constraints. How-
ever, to present the points I wish to make I will consider only the original, simpler
problem (1).

I will assume that the state equations are a block system; two blocks will su�ce
for my purposes:

h(x; u1; u2) =

�
h1(x; u1; u2)
h2(x; u1; u2)

�
:

In the context of Multidisciplinary Design Optimization, the blocks hi might describe
the state equations for di�erent disciplines, such as structures and aerodynamics,
together with interdisciplinary consistency conditions, and the aggregate h describes
the coupled multidisciplinary analysis system. See [5] for a further discussion of this
point.

I will further assume that given x and u1, we can solve

h1(x; u1; u2(x; u1)) = 0

for u2(x; u1), and, vice versa, given x and u2, we can solve

h2(x; u1(x; u2); u2) = 0

for u1(x; u2). This hypothesis simply reects the independent solubility of the dis-
ciplinary analyses. Note that this hypothesis means that the partition of the state
variables corresponds to that of the state equations; i.e., if there are ni equations in
hi, then there would be ni state variables in ui, and the system solved for ui would
be square.

I will consider three possible formulations of the optimization problem (1). The
�rst is the problem in its ostensibly unconstrained form; following [5], I will refer to
this as the Multidisciplinary Feasible (MDF) formulation:

minimize fMDF (x) � f(x; u1(x); u2(x))
where h1(x; u1(x); u2(x)) = 0

h2(x; u1(x); u2(x)) = 0:
(2)

1

At each iteration, we feed x into the multidisciplinary analysis system and solve for
the state u. Only the design variables x are treated as independent variables. This is
an example of a variable reduction approach, in which we use the equality constraints
to de�ne some of the variables as functions of the others, and eliminate them as
independent variables.

At the other extreme, we could view the state equations purely as equality con-
straints, yielding the All-at-Once (AAO) formulation:

minimize fAAO(x; u1; u2) � f(x; u1; u2)
subject to h1(x; u1; u2) = 0

h2(x; u1; u2) = 0:
(3)

This approach has many di�erent names in many di�erent �elds. For instance, it
is known as Simultaneous Analysis and Design (SAD or SAND) in structural opti-
mization [11]. It is with this view of the state equations as equality constraints that
\feasible" appears in the name \Multidisciplinary Feasible"; at each iteration we are
feasible with respect to the state constraints. The rationale for such a formulation is
that rather than spend a lot of time attaining multidisciplinary feasibility far from
an optimal solution, this constrained formulation allows us the freedom to attain
feasibility only at the same time as optimality.

Intermediate to these two formulations is one that, using John Dennis's apt ter-
minology, I will call the In-Between formulation. In this approach we eliminate one
of the blocks of state variables via the state equations (I choose to eliminate u2) to
arrive at the following problem:

minimize fIB(x; u1) � f(x; u1; u2(x; u1))
subject to hIB(x; u1) � h1(x; u1; u2(x; u1)) = 0
where h2(x; u1; u2(x; u1)) = 0:

(4)

In the taxonomy presented in [5], the In-Between formulation corresponds to the Indi-
vidual Discipline Feasible formulation. The consistency constraints of [5] correspond
to h1 in (4), while the individually feasible disciplines are subsumed in h2. This for-
mulation shares with the AAO formulation the advantage of additional degrees of
freedom a�orded by the constraints, while having perhaps substantially fewer explicit
variables in the optimization problem, since we have performed a partial variable re-
duction by eliminating u2 as an independent variable. For a further discussion of the
relative advantages and disadvantages of these formulations, see [5].

The goal of this paper is to show how these three formulations, the associated
sensitivities, and reduced basis methods for their solution are related. I will show how
one may, in a fairly simple manner, pass between the di�erent formulations together
with algorithms for their solution. It will turn out that to apply a reduced basis
algorithm to the three formulations requires, in principle, only a change to one step of
the optimization algorithm. This is due to the structure of the problem introduced by
the state constraints. This structure has important consequences for the design and
implementation of disciplinary analysis codes if they are to be used in optimization.

The work in [7] compares these three formulations for a model large-scale param-
eter estimation problem and shows the potential promise of the In-Between formula-
tion. The implementation used in that work realizes the idea presented here, and the
three formulations were solved with substantially the same code, as will be discussed
in x5.

2

In x2 I will review the notions of the reduced gradient and the reduced Hessian.
In x3, I will examine the sensitivity calculations associated with the MDF and In-
Between formulations. There I will show how they can be obtained from those of the
AAO formulation. In x4 I will outline how a reduced basis nonlinear programming
(NLP) algorithm works, and in x5 show how one may pass between reduced basis
algorithms for the solution of the di�erent formulations.

2. The reduced gradient and Hessian. In this section I will review the no-
tions of the reduced gradient and the reduced Hessian. First recall the classical implicit
function theorem [4].

Theorem 2.1 (The Implicit Function Theorem). Suppose � is a mapping

from an open subset of Rm �Rn into Rn. Suppose (y0; v0) is a point in Rm �Rn

such that

1. �(y0; v0) = 0;
2. � is continuously di�erentiable at (y0; v0);
3. the matrix @�

@v
(y0; v0) is invertible.

Then there exists a neighborhood � of y0 such that for each y 2 �, the equation

�(y; v) = 0 is soluble for v(y) 2 Rn. Moreover, the derivative of this solution v(y)
with respect to y is given by

dv

dy
= �

�
@�

@v

�
�1

@�

@y
:(5)

Formally, the latter formula is the result of implicit di�erentiation of �(y; v) = 0
to obtain

@�

@y
+
@�

@v

dv

dy
= 0

and then (5).
Now, suppose that v(y) is the unique solution to a state relation

�(y; v(y)) = 0(6)

where � is twice continuously di�erentiable and @�=@v is invertible. In practice,
the validity of these hypotheses typically follows from the existence and uniqueness
theory for the solution of the equation represented by (6). With these hypotheses, I
may apply the Implicit Function Theorem to compute sensitivities. Before doing so,
let me �rst de�ne the matrix

W = W (y; v) =

0
@ I

�
@�

@v

�1

(y; v)
@�

@y
(y; v)

1
A :

I will callW the injection operator associated with � since it is a one-to-one mapping
fromRm into Rm�Rn and is invertible on its range (i.e.,W has full column rank).
Its transpose WT I will call the reduction operator.

Let

N =
@�

@y
and B =

@�

@v
:

We call B the basic block since, by assumption, B = @�=@v is invertible and hence is
a basis of Rn. The associated state variables v are the basic variables. The remaining

3

design variables, y, are the non-basic variables, and N the non-basic block. In terms
of the basic and non-basic blocks,

W =

�
I

�B�1N

�
:

Note thatW is a basis for the nullspace of the linearized state constraint operator:

r�TW = (N B)

�
I

�B�1N

�
= 0:(7)

I will return to this point in x4 and x5.
Finally, given F : Rm �Rn ! R, de�ne � by

� = �(y; v) = �

�
@�

@v

�
�T

(y; v)rvF (y; v)(8)

and the Lagrangian `(y; v;�) by

`(y; v;�) = F (y; v) + �T�(y; v):

The quantity � is a Lagrange multiplier estimate arising from variable reduction [10].
For those familiar with the language of \the adjoint method" in control, � is the
costate or adjoint state.

Proposition 2.2. Let ~F (y) = F (y; v(y)), where v(y) is computed via (6), and

F : Rm �Rn ! Rq. Then

ry
~FT (y) = r(y;v)F

T (y; v(y))W (y; v(y)):(9)

If F is a real-valued function, then

r2
y
~F (y) = WT (y; v(y))

�
r2
(y;v)F (y; v(y)) +r2

(y;v)�(y; v(y))�(y; v(y))
�
W (y; v(y)):(10)

By r2
(y;v)

�� I mean

r2
(y;v)�� =

nX
i=1

�ir
2
(y;v)�i:

In the case of a real-valued F , transposition of (9) tells us that r ~F is given by

ry
~F (y) = WT (y; v(y))r(y;v)F (y; v(y)):(11)

The quantity appearing on the right-hand side of (11) is known as the reduced gradient

[10], since it is the product of the reduction operator W T with rF . Similarly, the
quantity on the right-hand side of (10) is called the reduced Hessian of the Lagrangian.

Proof. Computing the Jacobian of ~F , we see that

d ~F

dy
(y) =

@F

@y
(y; v(y)) +

@F

@v
(y; v(y))

dv

dy
(y):

4

This and the Implicit Function Theorem then yield

d ~F

dy
(y) =

@F

@y
(y; v(y)) �

@F

@v
(y; v(y))

�
@�

@v

�
�1

(y; v(y))
@�

@y
(y; v(y))

=

�
@F

@y
(y; v(y))

@F

@v
(y; v(y))

�0@ I

�

�
@�

@v

�
�1

(y; v(y))
@�

@y
(y; v(y))

1
A :

which is (9).
Next, the Hessian for real-valued F . We have

d2 ~F

dy2
=

d

dy

�
Fy(y; v(y)) + Fv(y; v(y))

dv

dy

�
or

d2 ~F

dy2
=

@Fy

@y
+
dv

dy

T @Fy

@v
+

@Fv

@y

dv

dy
+

dv

dy

T @Fv

@v

dv

dy
+ Fv

d2v

dy2
:

We can rewrite this in terms of the reduction and injection matrices as

d2 ~F

dx2
=

I
dv

dy

T
!0BB@

@Fy

@y

@Fv

@y

@Fy

@v

@Fv

@v

1
CCA
0
BB@ I

dv

dy

1
CCA+ Fv

d2v

dy2

= WT
�
r2
(y;v)F

�
W + Fv

d2v

dy2
:

Repeated implicit di�erentiation of �(y; v(y)) = 0 yields

d

dy

�
�y(y; v(y)) + �v(y; v(y))

dv

dy

�
= 0;

whence

d2v

dy2
= �

�
@�

@v

�
�1

@�y
@y

+
dv

dy

T @�y
@v

+
@�v
@y

dv

dy
+

dv

dy

T @�v
@v

dv

dy

!
:

Thus,

Fv
d2v

dy2
= �

@F

@v

�
@h

@u

�
�1

@�y

@y
+
dv

dy

T @�y

@v
+

@�v

@y

dv

dy
+

dv

dy

T @�v

@v

dv

dy

!

= �T

@�y

@y
+

dv

dy

T @�y

@v
+
@�v

@y

dv

dy
+
dv

dy

T @�v

@v

dv

dy

!

= WT
�
r2
(y;v)��

�
W:

Thus we �nally arrive at

d2 ~F

dy2
(y) =WT

�
r2
(y;v)F +r2

(y;v)h�
�
W = WT

�
r2
(y;v)`(y; v(y);�(y; v(y))

�
W;

which is (10).

5

3. Sensitivities for the three formulations. In this section I will derive some
formulae relating the sensitivities of the MDF, In-Between, and All-at-Once formu-
lations. You will see that the sensitivities are all derived from those of the AAO
formulation in simple and interesting ways.

Proposition 2.2 says that the gradient and Hessian associated with the MDF for-
mulation are the reduced gradient and reduced Hessian of the Lagrangian associated
with the AAO formulation, as we will now discuss. Let BAAO and NAAO denote the
basic and non-basic blocks associated with the AAO formulation,

BAAO =

0
BB@

@h1

@u1

@h1

@u2
@h2

@u1

@h2

@u2

1
CCA NAAO =

0
B@

@h1

@x

@h2

@x

1
CA ;

let WAAO denote the reduction matrix associated with the AAO formulation,

WAAO =

�
Ix

�B�1
AAONAAO

�
;

let �AAO denote the Lagrange multiplier associated with the AAO formulation,

�AAO = �B�T
AAOrufAAO;

and let `AAO denote the Lagrangian associated with the AAO formulation,

`AAO(x; u;�) = fAAO(x; u) + �Th(x; u):

Then we have this corollary of Proposition 2.2.
Corollary 3.1. Suppose that (x; u) is feasible with respect to the multidisci-

plinary analysis constraints: h(x; u) = 0. Then the gradients and Hessians at (x; u)
of the MDF and AAO formulations are related by

rxfMDF (x) = WT
AAO(x; u)r(x;u)fAAO(x; u)(12)

= WT
AAO(x; u)r(x;u)`AAO(x; u;�AAO(x; u))(13)

and

r2
xfMDF (x) = WT (x; u)

�
r2
(x;u)`AAO(x; u;�AAO(x; u))

�
WAAO(x; u):(14)

Proof. The relations (12) and (14) follow immediately from Proposition 2.2. The
equation (13) is a consequence of the fact that W T

AAOrh = 0.
Next we turn attention to the sensitivities associated with the In-Between formu-

lation (4). We will denote by S the Schur complement

S =
@h1

@u1
�
@h1

@u2

�
@h2

@u2

�
�1

@h2

@u1
:(15)

This is the Schur complement of the basic block BAAO upon elimination of the variable
u2. You can easily check that

B�1
AAO =0
BBB@

S�1 �S�1
@h1

@u2

�
@h2

@u2

�
�1

�

�
@h2

@u2

�
�1

@h2

@u1
S�1

�
@h2

@u2

�
�1

+

�
@h2

@u2

�
�1

@h2

@u1
S�1

@h1

@u2

�
@h2

@u2

�
�1

1
CCCA(16)

6

I will also denote by W2 the reduction matrix associated with the elimination of u2:

W2 =

0
BB@

Ix 0
0 Iu1

�

�
@h2

@u2

�
�1

@h2

@x
�

�
@h2

@u2

�
�1

@h2

@u2

1
CCA(17)

The next result concerns the basic and non-basic blocks for the In-Between for-
mulation. Equations (15) and (19) mean that the basic block associated with the
In-Between formulation (4) is the Schur complement that results if u2 is eliminated
from the basic block of the All-at-Once formulation.

Proposition 3.2. The nonbasic block associated with the In-Between formulation

(4) is

@hIB

@x
=

@h1

@x
�
@h1

@u2

�
@h2

@u2

�
�1

@h2

@x
:(18)

The basic block associated with the In-Between formulation (4) is

@hIB

@u1
=

@h1

@u1
�
@h1

@u2

�
@h2

@u2

�
�1

@h2

@u1
:(19)

Proof. Applying Proposition 2.2 with y = (x; u1), v = u2, and ~F (x; u1) =
hIB(x; u1; u2(x; u1)) yields�

@hIB

@x

@hIB

@u1

�
=

�
@h1

@x

@h1

@u1

@h1

@u2

�
W2

=

�
@h1

@x

@h1

@u1

@h1

@u2

�0BB@
Ix 0
0 Iu1

�

�
@h2

@u2

�
�1

@h2

@x
�

�
@h2

@u2

�
�1

@h2

@u1

1
CCA ;

from which we obtain (18) and (19).

Let

WIB =

0
@ Ix

�

�
@hIB

@u1

�
�1

@hIB

@x

1
A(20)

denote the reduction matrix associated with eliminating u1 from the In-Between for-
mulation. Let

�IB = �

�
@hIB

@u1

�
�T

ru1fIB(21)

denote the Lagrange multiplier associated with the In-Between formulation. In the
In-Between formulation, we eliminate u2 from the AAO formulation as an explicit
variable; the following proposition says that the the multiplier �IB can be obtained
from the AAO multiplier by dropping the component corresponding to the constraints
that de�ne u2.

7

Proposition 3.3. At a point (x; u1) feasible with respect to hIB, i.e., satisfying

hIB(x; u1) = 0 (and a fortiori, h2(x; u1; u2(x; u1) = 0), we have

�IB(x; u1) = (Iu1 0) �AAO(x; u1; u2):(22)

Proof. Applying Proposition 2.2 to compute r(x;u1)fIB(x; u1) we have

�IB = �S�Tru1fIB(x; u1)

= �S�T (0 Iu1)r(x;u1)fIB(x; u1)

= �S�T (0 Iu1)W
T
2 r(x;u1;u2)fAAO(x; u1; u2):

Writing this out leads to

�IB = �S�T (0 Iu1)

0
BB@

Ix 0 �
@h2

@x

T �@h2
@u2

�
�T

0 Iu1 �
@h2

@u1

T �@h2
@u2

�
�T

1
CCAr(x;u1;u2)fAAO(x; u1; u2)

= �

0 S�T � S�T

@h2

@u1

T �@h2
@u2

�
�T
!
r(x;u1;u2)fAAO(x; u1; u2)

= � (Iu1 0)B�T
AAO

�
0 Iu1 0
0 0 Iu2

�
r(x;u1;u2)fAAO(x; u1; u2)

= � (Iu1 0)B�T
AAOrufAAO(x; u1; u2)

= � (Iu1 0) �AAO:

We have the following factorization of the All-at-Once reduction operator in terms
of the In-Between reduction operator and the reduction operator associated with the
elimination of u2 as an explicit variable.

Proposition 3.4. Suppose that (x; u1) is feasible with respect to hIB, as in

Proposition 3.3. Then

WAAO = W2WIB :(23)

Proof. The proof is another icky calculation. We have

W2 =

0
B@

Ix

�S�1

@h1

@x
�

@h1

@u2

�
@h2

@u2

�
�1

@h2

@x

! 1
CA

and

WIB =

0
BB@

Ix 0
0 Iu1

�

�
@h2

@u2

�
�1

@h2

@x
�

�
@h2

@u2

�
�1

@h2

@u2

1
CCA ;

8

so

W2WIB =

0
BBBBBB@

Ix

�S�1

@h1

@x
�
@h1

@u2

�
@h2

@u2

�
�1

@h2

@x

!

�

�
@h2

@u2

�
�1

@h2

@x
+

�
@h2

@u2

�
�1

@h2

@x
S�1

@h1

@x
�
@h1

@u2

�
@h2

@u2

�
�1

@h2

@x

!

1
CCCCCCA

But from (16) we see that the last two rows of this product are none other than

�B�1
AAONAAO =

�

0
BBB@

S�1 �S�1
@h1

@u2

�
@h2

@u2

�
�1

�

�
@h2

@u2

�
�1

@h2

@u1
S�1

�
@h2

@u2

�
�1

+

�
@h2

@u2

�
�1

@h2

@u1
S�1

@h1

@u2

�
@h2

@u2

�
�1

1
CCCA
0
B@

@h1

@x

@h2

@x

1
CA

Thus WAAO = W2WIB.
The next proposition says that the reduced gradient and reduced Hessian for

the In-Between and All-at-Once formulations are the same at appropriately feasible
points.

Proposition 3.5. Suppose that (x; u1) is feasible with respect to hIB, as in

Proposition 3.3. Then

WT
IBr(x;u1)fIB(x; u1) = WT

AAOr(x;u1;u2)fAAO(x; u1; u2);(24)

WT
IBr(x;u1)`IB(x; u1;�IB) =WT

AAOr(x;u1;u2)`AAO(x; u1; u2;�AAO);(25)

r2
(x;u1)

`IB(x; u1;�IB) = WT
2

�
r2
(x;u1;u2)

`AAO(x; u1; u2;�AAO)
�
W2;(26)

and

WT
IBr

2
(x;u1)

`IB(x; u1;�IB)WIB = WT
AAOr

2
(x;u1;u2)

`AAO(x; u1; u2;�AAO)WAAO ;(27)

where �IB = �IB(x; u1) and �AAO = �AAO(x; u1; u2).
Proof. From Proposition 2.2 we have

r(x;u1)fIB = WT
2 r(x;u1;u2)fAAO;

this combined with Proposition 3.4 yields (24). Equation (25) then follows since
WT
IBrhIB = 0 and WT

AAOrh = 0.
Applying Proposition 2.2 to ~F = `IB we obtain

r2
(x;u1)

`IB = WT
2

�
r2
(x;u1;u2)

fAAO +r2
(x;u1;u2)

h1�IB +r2
(x;u1;u2)

h2�2

�
W2

where �2 is given by

�2 = �

�
@h2

@u2

�
�T

(0 Iu2)
�
r(x;u1;u2)fAAO +r(x;u1;u2)hIB�IB

�
:

9

Using (16) and (21), we obtain

�2 = �

�
@h2

@u2

�
�T

@f

@u2

T

+
@h1

@u2

T

�S�T

@f

@u1

T

�
@h2

@u1

T �@h2
@u2

�
�T

@f

@u2

T
!!!

= (0 Iu2)
�
�B�T

AAOrufAAO
�

= (0 Iu2)�AAO :

At this point the component of �AAO corresponding to the block h2 reappears.
Moreover, (22) tells us that �IB = (Iu1 0)�AAO : Thus,

r2
(x;u1)

`IB = WT
2

�
r2
(x;u1;u2)

fAAO +r2
(x;u1;u2)

h�AAO

�
W2;

which is (26). Moreover, by Proposition 3.4,

WT
IBr

2
(x;u1)

`IBWIB = WT
IBW

T
2

�
r2
(x;u1;u2)

fAAO +r2
(x;u1;u2)

h�AAO

�
W2WIB

= WT
AAOr

2
(x;u1;u2)

`AAOWAAO :

4. Reduced basis algorithms. In this section I will discuss a model Sequential
Quadratic Programming (SQP) subproblem and reduced basismethods for its solution.
SQP subproblems similar to this one are at the heart of many equality constrained
NLP algorithms.

The fundamental SQP subproblem for (3) is

minimize 1
2
sTHs+ gT s

subject to rhT s+ h = 0;
(28)

where H is an approximation to the Hessian of the Lagrangian and g is the gradient of
the Lagrangian. For a trust-region algorithm one would have, in addition, some man-
ner of trust-region constraint, but for now I will ignore this detail. This subproblem
may be stated in many equivalent ways; for a discussion, see [15].

Now, if one had a point sLF that was feasible with respect to the linearized
constraints, and a basis Z for the nullspace of the Jacobian of the constraints, then
one could express s as

s = sLF + Z�

and the SQP subproblem could be reduced to an unconstrained problem:

minimize 1
2
�TZTHZ� + (g +HsLF)TZT�:(29)

In a reduced basis approach to an equality constrained optimization problem we
take advantage of a certain form of basis for the nullspace of the linearized constraints
[10]. At each iteration of the optimization algorithm, we seek a partition of the
Jacobian of the constraints of the form

rhT = (N B)

where B is invertible; then

Z =

�
I

�B�1N

�
10

is a basis for the nullspace of rhT .
But we have already seen an example of such a nullspace basis at work. In the

case of state constraints, we have an immediate and �xed choice for the basis matrix
B, to wit, the linearized state operator. This is the import of (7). Moreover, the
invertibility of B allows us to obtain a linearly feasible point sLF ; we may simply take

sLF =

�
0

�B�1h

�
:(30)

This corresponds to solving the linearized state equation, or, if one prefers, taking one
unglobalized step of Newton's method towards the solution of the state equation.

In terms of W , then, the model SQP subproblem (28) could be transformed to
the unconstrained problem

minimize 1
2
�TWTHW� + (g +HsLF)TWT�:

One would solve this problem for the reduced step �|a step in the design variables
alone|and then take the step s =W� in all the degrees of freedom in the optimization
problem, both the design variables and those state variables kept explicit.

Note that this is not only a convenient reduction, but in the context of MDO this
is almost surely a necessary step. The SQP subproblem involves attaining feasibility
with respect to the linearized state constraints. Therefore the SQP subproblem is nec-
essarily more di�cult than solving the linearized multidisciplinary analysis problem,
which, for problems involving PDE, may be quite di�cult in itself. In order to solve
the optimization subproblem we must exploit the structure of the problem|in this
case, its relation to the state constraints|and avail ourselves of the pieces available
from the solution of the analysis problem.

5. A simple way of implementing reduced basis algorithms for the dif-

ferent formulations. In this section I will show how the relations between the dif-
ferent formulations in x3 mean that, in principle, it is possible to implement an opti-
mization algorithm for the AAO formulation that with a single modi�cation becomes
an algorithm for either the MDF or In-Between formulations. I have actually done
such an implementation for the work described in [7].

The key to such an implementation lies in the relations that were presented in
x3. To make matters concrete, I will discuss the following trust-region algorithm for
large-scale equality constrained optimization problems. This algorithm was used for
the work in [7] and is a relative of the algorithms described in [3] and [6]. I use
the subscript and superscript \c" to denote quantities associated with the current
iterate, and the subscript and superscript \+" to denote quantities associated with
the putative next iterate, following [8].

At each iteration, we approximately solve the subproblem

minimize 1
2
sTHs+ gT s

subject to
 rhT s + hc

 � �

k s k � �

(31)

where H is an approximation to the Hessian of the Lagrangian, g is the gradient of
the Lagrangian, � is the current trust radius, and � is chosen to enforce Fraction of

Cauchy Decrease on
 rhTs + hc

2 over a trust-region of radius r�, where 0 < r < 1
is �xed.

11

The approximate solution of the subproblem is e�ected in two stages. The �rst
is to take a step in the basic variables to improve linear feasibility, rather as in (30):

sLF = �d;(32)

where

d =

0
@ 0

�

�
@h

@u

�
�1

hc

1
A :

The quantity � is chosen to solve

minimize 1
2

 �rhTd+ hc
2

subject to k �d k � r�:

The second stage is then to improve optimality subject to the constraint of not
degrading the improved linear feasibility achieved by sLF . Let

� = rhTsLF + hc:

The subproblem we solve to improve optimality subject to improved linear feasibility
is

minimize 1
2
sTHs+ gT s

subject to rhT s + hc = �
k s k � �:

(33)

This we do by using the reduced basis and writing the desired step as

s = sLF +W�

and solving the trust-region problem

minimize 1
2
�TWTHW� + (g +HsLF)TWT�

subject to
 sLF +W�

 � �:
(34)

We then test the aggregate step s using the augmented Lagrangian

L(y;�; �) = f(y) + �Th(y) +
�

2
k h(y) k

2
;

as the merit function with the penalty weight � updated as described in [9]. Figure 1
contains a rough outline of the algorithm for the AAO formulation.

Now suppose that I modify this algorithm by adding an analysis step in which
given design variables xc, I solve the multidisciplinary analysis problem h(xc; uc) = 0.
This single modi�cation, illustrated in Figure 2, yields a trust region algorithm for
the MDF formulation.

Theorem 5.1. The modi�ed algorithm in Figure 2 is equivalent to a trust region

algorithm for the MDF formulation.

Proof. I will check the following:
1. At every step, we are feasible with respect to the constraint h(xc; uc) = 0.

This is, of course, true by design.

12

Initialization: Choose an initial (xc; uc).
Until convergence, do f

1. Compute the multiplier

�AAO = �

�
@h

@u

�
�1

rufAAO:

2. Test for convergence.
3. Construct a local model of `AAO about (xc; uc).
4. Take a step sLF to improve linear feasibility:

sLF = �

0
@ 0

�

�
@h

@u

�
�1

hc

1
A :

5. Subject to the improved linear feasibility, take a step to improve
optimality:

minimize 1
2
�TWT

AAOHAAOWAAO� + (gAAO +HAAOs
LF)TWT

AAO�

subject to
 sLF +WAAO�

 � �:

6. Set s = (sx; su) = sLF +WAAO�.
7. Evaluate (x+; u+) = (xc; uc) + (sx; su).
8. Update (xc; uc), �, &c.

g

Fig. 1. Reduced basis algorithm for the AAO formulation.

2. The subproblems we solve in the context of the AAO formulation correspond
to a trust region subproblem for the MDF formulation.

3. The merit function we use to evaluate the step taken for the AAO formulation
corresponds to the correct merit function for the MDF formulation.

Because we solve the analysis problem h(xc; uc) = 0 at each iteration, hc = 0 and
so sLF = 0. The subproblem we solve to improve optimality then becomes

minimize 1
2
�TWT

AAOHAAOWAAO� + gTAAOW
T
AAO�

subject to k WAAO� k � �:

However, in light of Corollary 3.1, this is none other than

minimize 1
2
�Tr2

xfMDF� +rxf
T
MDF�

subject to k WAAO� k � �:

This we recognize as a trust-region problem for the MDF formulation, which estab-
lishes Point 2. Note, however, the non-standard scaling of the trust region constraint.
As discussed in [14], this scaling is quite natural since it measures the e�ect of changes
in the design variables on the state variables.

Moreover, Point 3 holds. Because h(x; u) = 0 at each step, the augmented La-
grangian merit function reduces to

fAAO(x; u(x)) + �TAAOh(x; u(x)) +
�

2
k h(x; u(x)) k

2
= fAAO(x; u(x)) = fMDF (x);

13

Initialization: Choose an initial xc.
Until convergence, do f

0. Analysis: Solve h(x; u(x)) = 0 for the state u(x).
1. Test for convergence.

...

7. Analysis: Solve h(x+; u+) = 0 for u+(x+) and evaluate

(x+; u+).

...

g

Fig. 2. Reduced basis algorithm for the AAO formulation with a multidisciplinary analysis step.

Initialization: Choose an initial (xc; uc1).
Until convergence, do f

0. Analysis: Solve h2(x; u1; u2(x; u1)) = 0 for u2(x; u1).
1. Test for convergence.

...

7. Analysis: Solve h1(x
+; u+1 ; u

+
2) = 0 for u+2 (x+; u

+
1) and

evaluate (x+; u+).

...

g

Fig. 3. Reduced basis algorithm for the AAO formulation with an analysis step that eliminates u2.

which is the merit function for the unconstrained MDF formulation. Thus we have a
trust region algorithm for the MDF formulation.

Thus, simply by the addition of an analysis step the reduced basis algorithm for
the AAO formulation becomes a reduced basis algorithm for the MDF formulation,
without any re-implementation of sensitivities or other procedures. In fact, this re-
duced basis algorithm is an instance of a class of algorithms known as Generalized
Reduced Gradient methods, which date back to Abadie and Carpentier in the early
1960s. For further discussion and illustration of these methods applied to problems
with state constraints, see [1, 2, 12, 13, 14].

Now, what happens if I add a partial analysis step to the algorithm for the
AAO formulation, an analysis that enforces feasibility with respect to the block of
constraints h2, as in Figure 3? As it happens|as it was meant to happen|we obtain
a reduced basis algorithm for the In-Between formulation.

Theorem 5.2. The modi�ed algorithm in Figure 3 is equivalent to a reduced

basis trust region algorithm for the In-Between formulation.

14

Proof. I will check the following:
1. At every step, we are feasible with respect to the In-Between state constraint

h2(x; u1; u2(x; u1)) = 0. This is true by design.
2. The subproblem we solve in the context of the AAO formulation to improve

model feasibility yields a similar step for the In-Between formulation.
3. The subproblem we solve in the context of the AAO formulation to improve

optimality subject to improved model feasibility does the same for the In-
Between formulation.

4. The merit function we use to evaluate the AAO formulation corresponds to
the correct merit function for the In-Between formulation.

We have

B�1
AAOhc

=

0
BBB@

S�1 �S�1
@h1

@u2

�
@h2

@u2

�
�1

�

�
@h2

@u2

�
�1

@h2

@u1
S�1

�
@h2

@u2

�
�1

+

�
@h2

@u2

�
�1

@h2

@u1
S�1

@h1

@u2

�
@h2

@u2

�
�1

1
CCCA
�

h1
0

�

=

0
@ Iu1

�

�
@h2

@u2

�
�1

@h2

@u1

1
AS�1h1

=

0
@ Iu1

�

�
@h2

@u2

�
�1

@h2

@u1

1
AB�1

IBhIB

and hence

sLFAAO =

�
0

��B�1
AAOh

�

=

0
BB@

Ix 0
0 Iu1

�

�
@h2

@u2

�
�1

@h2

@x
�

�
@h2

@u2

�
�1

@h2

@x

1
CCA
�

0
sLFIB

�

= W2s
LF
IB ;

where � is chosen so that sLFIB W2

�
 W2s

LF
IB

 = r�:

This settles Point 2. Again, note the non-standard scaling of the trust-region; this
tracks the e�ect of the step on the implicit variable u2.

Meanwhile, by Proposition 3.5,

WAAO = W2WIB ;

WT
AAOHAAOWAAO = WT

IBHIBWIB ;

WT
AAOgIB = WT

IBgIB;

and

WT
AAOHAAOs

LF
AAO = WT

IBW
T
2 HAAOW2s

LF
IB

= WT
IBHIBs

LF
IB :

15

Thus we have the equivalence between the subproblem

minimize 1
2
�TWT

AAOHAAOWAAO� +HAAOs
LF
AAO + gTAAO�

subject to
 sLFAAO +WAAO�

 � �

for the AAO formulation and the subproblem

minimize 1
2
�TWT

IBHIBWIB� +HIBs
LF
AAO + gTIB�

subject to
 sLFIB +WIB�

W2

� �

for the In-Between formulation, which establishes Point 3.
Moreover, because h2(x; u1; u2(x; u1)) = 0 at each step, Proposition 3.3 tells us

that the augmented Lagrangian merit function reduces to

fAAO(x; u(x)) + �TAAOh(x; u(x)) +
�

2
k h(x; u(x)) k

2
=

fIB(x; u1) + �TIBhIB(x; u1) +
�

2
k hIB(x; u1) k

2
;

which is the augmented Lagrangian for the In-Between formulation, con�rming Point
4. Thus we have a reduced basis trust region algorithmfor the In-Between formulation.

I have shown that the addition of an appropriate analysis step to the reduced
basis algorithm in Figure 1 for the AAO formulation yields reduced basis algorithms
for the MDF and In-Between formulations. Similar results hold for other algorithms
one might consider, such as an SQP approach using a line-search.

6. Conclusion. The results of x3 and x5 follow from structural features of opti-
mization problems governed by state constraints. A number of other practical conse-
quences of these structural features are discussed in [14]. The results presented here
illustrate, I believe, some of the rich and useful structure of optimization problems
with state constraints.

I have shown that a properly structured and implemented reduced basis algorithm
can be modi�ed in a conceptually and practically simplemanner to produce algorithms
for alternative problem formulations, demonstrating a truly gratifying connection be-
tween the formulation of a problem and algorithms for its solution. One can easily
build a telescoping family of algorithms that correspond to di�erent formulations of

the problem, and have di�erent computational behavior.
The key to this approach is the availability of certain components inside the state

constraints; in particular, at the very least the actions on vectors of the operators

@hi

@x
;
@hi

@u
;

�
@hi

@u

�
�1

;

�
@hi

@u

�
�T

:

If simulation codes were written to make these components accessible to those of
us doing optimization, then our task would be greatly facilitated, and alternative
formulations and algorithms could be easily explored.

16

REFERENCES

[1] J. Abadie, Application of the GRG algorithm to optimal control problems, in Integer and
Nonlinear Programming, J. Abadie, ed., North-Holland Elsevier, 1970.

[2] J. Abadie and J. Carpentier, G�en�eralisation de la m�ethode du gradient r�eduit de Wolfe au

cas des contraintes non-lin�eaires, Tech. Rep. HR 6678, �Electricit�e de France, 1965.
[3] N. Alexandrov, Multilevel algorithms for nonlinear equations and equality constrained opti-

mization, Tech. Rep. TR93{20, Department of Computational and Applied Mathematics,
Rice University, May 1993. Ph.D. thesis.

[4] R. C. Buck, Advanced Calculus, McGraw-Hill, New York, 1956.
[5] E. J. Cramer, J. E. Dennis, Jr., P. D. Frank, R. M. Lewis, and G. R. Shubin, Problem

formulation for multidisciplinary optimization, SIAM J. Optimization, 4 (1994), pp. 754{
776.

[6] J. E. Dennis, Jr., M. El-Alem, and M. C. Maciel, A global convergence theory for general

trust-region-based algorithms for equality constrained optimization, Tech. Rep. TR92{28,
Department of Computational and Applied Mathematics, Rice University, Houston, Texas,
1992. Revised July 1993.

[7] J. E. Dennis, Jr. and R. M. Lewis, A comparison of nonlinear programming approaches to an

elliptic inverse problem and a new domain decomposition approach. Submitted to SIAM
Journal on Scienti�c and Statistical Computing.

[8] J. E. Dennis, Jr. and R. E. Schnabel, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, Prentice-Hall, 1983.

[9] M. M. El-Alem,A global convergence theory for the Celis{Dennis{Tapia trust region algorithm

for constrained optimization, SIAM Journal on Numerical Analysis, 28 (1991), pp. 266{290.

[10] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1981.
[11] R. T. Haftka, Z. Gurdal, and M. Kamat, Elements of Structural Optimization, Kluwer

Academic Publishers, 1990.

[12] L. S. Lasdon, J. P. E. Coffman, R. MacDonald, J. W. McFarland, and K. Sepehrnoori,
Optimal hydrocarbon reservoir production policies, Operations Research, 34 (1986), pp. 40{

54.
[13] L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, Design and testing of a generalized

reduced gradient code for nonlinear programming, ACM Transactions on Mathematical
Software, 4 (1978), pp. 34{50.

[14] R. M. Lewis, A nonlinear programming perspective on the optimization of systems described

by di�erential equations and other complex simulations. In preparation.
[15] R. A. Tapia, Quasi-Newton methods for equality constrained optimization: Equivalence of

existing methods and a new implementation, in Nonlinear Programming 3: Proceedings of
the Special InterestGroup on MathematicalProgrammingSymposium,O. L. Mangasarian,

R. R. Meyer, and S. M. Robinson, eds., New York, 1978, Academic Press.

17

